Back to Search Start Over

Tissue-Adhesive Hydrogel Spray System for Live Cell Immobilization on Biological Surfaces.

Authors :
Ishikawa S
Kamata H
Chung UI
Sakai T
Source :
ACS applied bio materials [ACS Appl Bio Mater] 2023 Nov 20; Vol. 6 (11), pp. 4613-4619. Date of Electronic Publication: 2023 Jul 19.
Publication Year :
2023

Abstract

Gelatin hydrogels are used as three-dimensional cell scaffolds and can be prepared using various methods. One widely accepted approach involves crosslinking gelatin amino groups with poly(ethylene glycol) (PEG) modified with N -hydroxysuccinimide ester (PEG-NHS). This method enables the encapsulation of live cells within the hydrogels and also facilitates the adhesion of the hydrogel to biological tissues by crosslinking their surface amino groups. Consequently, these hydrogels are valuable tools for immobilizing cells that secrete beneficial substances in vivo. However, the application of gelatin hydrogels is limited due to the requirement for several minutes to solidify under conditions of neutral pH and polymer concentrations suitable for live cells. This limitation makes it impractical for use with biological tissues, which have complex shapes or inclined surfaces, restricting its application to semi-closed spaces. In this study, we propose a tissue-adhesive hydrogel that can be sprayed and immobilized with live cells on biological tissue surfaces. This hydrogel system combines two components: (1) gelatin/PEG-NHS hydrogels and (2) instantaneously solidifying PEG hydrogels. The sprayed hydrogel solidified within 5 s after dispensing while maintaining the adhesive properties of the PEG-NHS component. The resulting hydrogels exhibited protein permeability, and the viability of encapsulated human mesenchymal stem/stromal cells (hMSCs) remained above 90% for at least 7 days. This developed hydrogel system represents a promising approach for immobilizing live cells on tissue surfaces with complex shapes.

Details

Language :
English
ISSN :
2576-6422
Volume :
6
Issue :
11
Database :
MEDLINE
Journal :
ACS applied bio materials
Publication Type :
Academic Journal
Accession number :
37467040
Full Text :
https://doi.org/10.1021/acsabm.3c00378