Back to Search Start Over

Ferrozoles: Ferrocenyl derivatives of letrozole with dual effects as potent aromatase inhibitors and cytostatic agents.

Authors :
Diaz de Greñu B
Fernández-Aroca DM
Organero JA
Durá G
Jalón FA
Sánchez-Prieto R
Ruiz-Hidalgo MJ
Rodríguez AM
Santos L
Albasanz JL
Manzano BR
Source :
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry [J Biol Inorg Chem] 2023 Sep; Vol. 28 (6), pp. 531-547. Date of Electronic Publication: 2023 Jul 17.
Publication Year :
2023

Abstract

In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.<br /> (© 2023. The Author(s), under exclusive licence to Society for Biological Inorganic Chemistry (SBIC).)

Details

Language :
English
ISSN :
1432-1327
Volume :
28
Issue :
6
Database :
MEDLINE
Journal :
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
37458856
Full Text :
https://doi.org/10.1007/s00775-023-02006-0