Back to Search Start Over

Near-Infrared Fluorescence Tomography and Imaging of Ventricular Cerebrospinal Fluid Flow and Extracranial Outflow in Non-Human Primates.

Authors :
Zhu B
Hendricks J
Morton JE
Rasmussen JC
Janssen C
Shah MN
Sevick-Muraca EM
Source :
IEEE transactions on medical imaging [IEEE Trans Med Imaging] 2023 Dec; Vol. 42 (12), pp. 3555-3565. Date of Electronic Publication: 2023 Nov 30.
Publication Year :
2023

Abstract

The role of the lymphatics in the clearance of cerebrospinal fluid (CSF) from the brain has been implicated in multiple neurodegenerative conditions. In premature infants, intraventricular hemorrhage causes increased CSF production and, if clearance is impeded, hydrocephalus and severe developmental disabilities can result. In this work, we developed and deployed near-infrared fluorescence (NIRF) tomography and imaging to assess CSF ventricular dynamics and extracranial outflow in similarly sized, intact non-human primates (NHP) following microdose of indocyanine green (ICG) administered to the right lateral ventricle. Fluorescence optical tomography measurements were made by delivering ~10 mW of 785 nm light to the scalp by sequential illumination of 8 fiber optics and imaging the 830 nm emission light collected from 22 fibers using a gallium arsenide intensified, charge coupled device. Acquisition times were 16 seconds. Image reconstruction used the diffusion approximation and hard-priors obtained from MRI to enable dynamic mapping of ICG-laden CSF ventricular dynamics and drainage into the subarachnoid space (SAS) of NHPs. Subsequent, planar NIRF imaging of the scalp confirmed extracranial efflux into SAS and abdominal imaging showed ICG clearance through the hepatobiliary system. Necropsy confirmed imaging results and showed that deep cervical lymph nodes were the routes of extracranial CSF egress. The results confirm the ability to use trace doses of ICG to monitor ventricular CSF dynamics and extracranial outflow in NHP. The techniques may also be feasible for similarly-sized infants and children who may suffer impairment of CSF outflow due to intraventricular hemorrhage.

Details

Language :
English
ISSN :
1558-254X
Volume :
42
Issue :
12
Database :
MEDLINE
Journal :
IEEE transactions on medical imaging
Publication Type :
Academic Journal
Accession number :
37440390
Full Text :
https://doi.org/10.1109/TMI.2023.3295247