Back to Search
Start Over
Betulinic acid-mediating miRNA-365 inhibited the progression of pancreatic cancer.
- Source :
-
Oncology research [Oncol Res] 2023 Jun 27; Vol. 31 (4), pp. 505-514. Date of Electronic Publication: 2023 Jun 27 (Print Publication: 2023). - Publication Year :
- 2023
-
Abstract
- Background: The dilemma of pancreatic cancer treatment has become a global challenge. For this reason, effective, feasible, and new medical methods are currently much-needed. Betulinic acid (BA) has been valued as a potential therapy for pancreatic cancer. However, the mechanism by which BA exerts an inhibitory effect on the development of pancreatic cancer remains elusive.<br />Methods: A rat model and two cell models of pancreatic cancer were established, and the effect of BA on pancreatic cancer was verified in vivo and in vitro by using MTT, Transwell, flow cytometry, RT-PCR, Elisa and immunohistochemistry. At the same time, miR-365 inhibitors were introduced to test whether BA played a role in mediating miR-365.<br />Results: BA can significantly inhibit the proliferation and invasion of pancreatic cancer cells and promote apoptosis. In vivo experiments, BA can significantly lower the number of cancer cells and tumor volume in the rat model of pancreatic cancer. In vitro , it was found that BA inhibited the protein level and phosphorylation level of AKT/STAT3 by mediating the expression of miR365/BTG2/IL-6. Like BA, miR-365 inhibitors also significantly inhibited cell viability and invasion ability, and inhibited the protein level and phosphorylation level of AKT/STAT3 by changing the expression of BTG2/IL-6, and their combination had a synergistic effect.<br />Conclusion: BA inhibits AKT/STAT3 expression and phosphorylation by modulating miR-365/BTG2/IL-6 expression, and BA inhibits the progression of pancreatic cancer through the aforementioned mechanism.<br />Competing Interests: The authors declare that they have no conflicts of interest to report regarding the present study.<br /> (© 2023 Li et al.)
- Subjects :
- Humans
Rats
Animals
Pentacyclic Triterpenes pharmacology
Betulinic Acid
Proto-Oncogene Proteins c-akt metabolism
Interleukin-6 pharmacology
Cell Line, Tumor
Apoptosis
Cell Proliferation
Tumor Suppressor Proteins
MicroRNAs genetics
MicroRNAs metabolism
Triterpenes pharmacology
Pancreatic Neoplasms drug therapy
Pancreatic Neoplasms genetics
Pancreatic Neoplasms metabolism
Immediate-Early Proteins
Subjects
Details
- Language :
- English
- ISSN :
- 1555-3906
- Volume :
- 31
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Oncology research
- Publication Type :
- Academic Journal
- Accession number :
- 37415745
- Full Text :
- https://doi.org/10.32604/or.2023.026959