Back to Search
Start Over
ATP yield of plant respiration: potential, actual and unknown.
- Source :
-
Annals of botany [Ann Bot] 2023 Oct 04; Vol. 132 (1), pp. 133-162. - Publication Year :
- 2023
-
Abstract
- Background and Aims: The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns.<br />Method: A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP.<br />Key Results: Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential.<br />Conclusions: Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
Details
- Language :
- English
- ISSN :
- 1095-8290
- Volume :
- 132
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Annals of botany
- Publication Type :
- Academic Journal
- Accession number :
- 37409716
- Full Text :
- https://doi.org/10.1093/aob/mcad075