Back to Search Start Over

Genotype by environment interaction and heteroscedasticity influence the expression of parasite resistance in Katahdin sheep.

Authors :
Arisman BC
Burke JM
Morgan JLM
Lewis RM
Source :
Journal of animal science [J Anim Sci] 2023 Jan 03; Vol. 101.
Publication Year :
2023

Abstract

Increasingly, sheep producers are choosing breeds that express resistance to gastrointestinal parasites due to reduced efficacy of anthelminthic drugs. One such breed is Katahdin. Katahdins are raised in various climates and management systems in the United States, which can be combined into eco-management clusters to describe production environments more holistically. The objectives of this study were to determine if genotype by environment interaction (G × E) and heteroscedasticity existed across these eco-management clusters for traits indicative of parasite resistance. Body weights (BW), FAMACHA scores (FAM), and fecal egg counts (FEC) were collected at around 90 d in 3,527 Katahdin lambs delineated into nine eco-management clusters. A tri-variate animal model including birth-rearing type, sex, and dam age (as a quadratic covariate) as fixed effects, and eco-management cluster, direct additive, uncorrelated maternal environmental (for BW), and residual as random effects, was fitted with ASReml. Heritability estimates for BW, FEC, and FAM were 0.36 ± 0.07, 0.31 ± 0.07, and 0.26 ± 0.05, respectively. The genetic (additive) correlation between BW with FEC was -0.26 ± 0.08 and with FAM was -0.16 ± 0.08, and thereby favorable. Heritabilities were also estimated univariately within eco-management clusters and ranged from 0.30 ± 0.05 to 0.37 ± 0.05 for BW, 0.18 ± 0.12 to 0.50 ± 0.13 for FEC, and 0.07 ± 0.06 to 0.40 ± 0.19 for FAM. Significant genetic and phenotypic heteroscedasticity among eco-management clusters was detected in FEC and FAM. A sire by eco-management cluster interaction term was added to the initial model fitted to evaluate G × E. This interaction defined substantial variation (P < 0.01) in all traits and explained 12% (FEC) to 20% (BW) of the phenotypic variation. Accounting for G × E and heteroscedasticity in the design and implementation of breeding programs may introduce operational challenges. Still, doing so would improve the efficacy of selection programs to improve parasite resistance.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science.)

Details

Language :
English
ISSN :
1525-3163
Volume :
101
Database :
MEDLINE
Journal :
Journal of animal science
Publication Type :
Academic Journal
Accession number :
37407224
Full Text :
https://doi.org/10.1093/jas/skad228