Back to Search
Start Over
Overcoming Water Diffusion Limitations in Hydrogels via Microtubular Graphene Networks for Soft Actuators.
- Source :
-
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2023 Oct; Vol. 35 (41), pp. e2302816. Date of Electronic Publication: 2023 Aug 17. - Publication Year :
- 2023
-
Abstract
- Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.<br /> (© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1521-4095
- Volume :
- 35
- Issue :
- 41
- Database :
- MEDLINE
- Journal :
- Advanced materials (Deerfield Beach, Fla.)
- Publication Type :
- Academic Journal
- Accession number :
- 37369361
- Full Text :
- https://doi.org/10.1002/adma.202302816