Back to Search Start Over

Explaining machine-learning models for gamma-ray detection and identification.

Authors :
Bandstra MS
Curtis JC
Ghawaly JM Jr
Jones AC
Joshi THY
Source :
PloS one [PLoS One] 2023 Jun 20; Vol. 18 (6), pp. e0286829. Date of Electronic Publication: 2023 Jun 20 (Print Publication: 2023).
Publication Year :
2023

Abstract

As more complex predictive models are used for gamma-ray spectral analysis, methods are needed to probe and understand their predictions and behavior. Recent work has begun to bring the latest techniques from the field of Explainable Artificial Intelligence (XAI) into the applications of gamma-ray spectroscopy, including the introduction of gradient-based methods like saliency mapping and Gradient-weighted Class Activation Mapping (Grad-CAM), and black box methods like Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). In addition, new sources of synthetic radiological data are becoming available, and these new data sets present opportunities to train models using more data than ever before. In this work, we use a neural network model trained on synthetic NaI(Tl) urban search data to compare some of these explanation methods and identify modifications that need to be applied to adapt the methods to gamma-ray spectral data. We find that the black box methods LIME and SHAP are especially accurate in their results, and recommend SHAP since it requires little hyperparameter tuning. We also propose and demonstrate a technique for generating counterfactual explanations using orthogonal projections of LIME and SHAP explanations.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2023 Bandstra et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1932-6203
Volume :
18
Issue :
6
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
37339151
Full Text :
https://doi.org/10.1371/journal.pone.0286829