Back to Search Start Over

HT-B and S-RNase CRISPR-Cas9 double knockouts show enhanced self-fertility in diploid Solanum tuberosum .

Authors :
Lee S
Enciso-Rodriguez FE
Behling W
Jayakody T
Panicucci K
Zarka D
Nadakuduti SS
Buell CR
Manrique-Carpintero NC
Douches DS
Source :
Frontiers in plant science [Front Plant Sci] 2023 May 31; Vol. 14, pp. 1151347. Date of Electronic Publication: 2023 May 31 (Print Publication: 2023).
Publication Year :
2023

Abstract

The Gametophytic Self-Incompatibility (GSI) system in diploid potato ( Solanum tuberosum L.) poses a substantial barrier in diploid potato breeding by hindering the generation of inbred lines. One solution is gene editing to generate self-compatible diploid potatoes which will allow for the generation of elite inbred lines with fixed favorable alleles and heterotic potential. The S-RNase and HT genes have been shown previously to contribute to GSI in the Solanaceae family and self-compatible S. tuberosum lines have been generated by knocking out S-RNase gene with CRISPR-Cas9 gene editing. This study employed CRISPR-Cas9 to knockout HT-B either individually or in concert with S-RNase in the diploid self-incompatible S. tuberosum clone DRH-195. Using mature seed formation from self-pollinated fruit as the defining characteristic of self-compatibility, HT-B- only knockouts produced little or no seed. In contrast, double knockout lines of HT-B and S-RNase displayed levels of seed production that were up to three times higher than observed in the S-RNase -only knockout, indicating a synergistic effect between HT-B and S-RNase in self-compatibility in diploid potato. This contrasts with compatible cross-pollinations, where S-RNase and HT-B did not have a significant effect on seed set. Contradictory to the traditional GSI model, self-incompatible lines displayed pollen tube growth reaching the ovary, yet ovules failed to develop into seeds indicating a potential late-acting self-incompatibility in DRH-195. Germplasm generated from this study will serve as a valuable resource for diploid potato breeding.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2023 Lee, Enciso-Rodriguez, Behling, Jayakody, Panicucci, Zarka, Nadakuduti, Buell, Manrique-Carpintero and Douches.)

Details

Language :
English
ISSN :
1664-462X
Volume :
14
Database :
MEDLINE
Journal :
Frontiers in plant science
Publication Type :
Academic Journal
Accession number :
37324668
Full Text :
https://doi.org/10.3389/fpls.2023.1151347