Back to Search Start Over

Deep Learning Versus Neurologists: Functional Outcome Prediction in LVO Stroke Patients Undergoing Mechanical Thrombectomy.

Authors :
Herzog L
Kook L
Hamann J
Globas C
Heldner MR
Seiffge D
Antonenko K
Dobrocky T
Panos L
Kaesmacher J
Fischer U
Gralla J
Arnold M
Wiest R
Luft AR
Sick B
Wegener S
Source :
Stroke [Stroke] 2023 Jul; Vol. 54 (7), pp. 1761-1769. Date of Electronic Publication: 2023 Jun 14.
Publication Year :
2023

Abstract

Background: Despite evolving treatments, functional recovery in patients with large vessel occlusion stroke remains variable and outcome prediction challenging. Can we improve estimation of functional outcome with interpretable deep learning models using clinical and magnetic resonance imaging data?<br />Methods: In this observational study, we collected data of 222 patients with middle cerebral artery M1 segment occlusion who received mechanical thrombectomy. In a 5-fold cross validation, we evaluated interpretable deep learning models for predicting functional outcome in terms of modified Rankin scale at 3 months using clinical variables, diffusion weighted imaging and perfusion weighted imaging, and a combination thereof. Based on 50 test patients, we compared model performances to those of 5 experienced stroke neurologists. Prediction performance for ordinal (modified Rankin scale score, 0-6) and binary (modified Rankin scale score, 0-2 versus 3-6) functional outcome was assessed using discrimination and calibration measures like area under the receiver operating characteristic curve and accuracy (percentage of correctly classified patients).<br />Results: In the cross validation, the model based on clinical variables and diffusion weighted imaging achieved the highest binary prediction performance (area under the receiver operating characteristic curve, 0.766 [0.727-0.803]). Performance of models using clinical variables or diffusion weighted imaging only was lower. Adding perfusion weighted imaging did not improve outcome prediction. On the test set of 50 patients, binary prediction performance between model (accuracy, 60% [55.4%-64.4%]) and neurologists (accuracy, 60% [55.8%-64.21%]) was similar when using clinical data. However, models significantly outperformed neurologists when imaging data were provided, alone or in combination with clinical variables (accuracy, 72% [67.8%-76%] versus 64% [59.8%-68.4%] with clinical and imaging data). Prediction performance of neurologists with comparable experience varied strongly.<br />Conclusions: We hypothesize that early prediction of functional outcome in large vessel occlusion stroke patients may be significantly improved if neurologists are supported by interpretable deep learning models.<br />Competing Interests: Disclosures Dr Heldner reports grants from the Bangerter Foundation, the Swiss National Science Foundation, SITEM (Center for Translational Medicine and Biomedical Entrepreneurship) Support Funds, and the Swiss Heart Foundation, all outside the submitted work. Dr Antonenko reports a grant from the Swiss National Science Foundation. Dr Dobrocky reports consultant fees for MicroVention, Inc. Dr Fischer reports grants from Alexion, CSL Behring, Medtronic, Penumbra, Inc, Phenox, Inc, Rapid Medical, Ltd, and Stryker. Dr Gralla reports interests with Medtronic USA, Inc. Dr Arnold reports consultancy fees from Amgen, AstraZeneca, Bayer, Bristol Myers Squibb, Covidien, Daiichi Sankyo, Novartis, Pfizer, Boehringer Ingelheim, Covidien, Medtronic, and Novo Nordisk. Dr Luft reports consultancy fees from Amgen and Moleac, Ltd. Susanne Wegener received research funds by the Swiss National Science Foundation, the UZH Clinical research priority program (CRPP) stroke, the Swiss Heart foundation, the Zurich Neuroscience Center (ZNZ), speaker honoraria from Springer, Teva Pharma, and consultancy fees from Bayer and Novartis. The other authors report no conflicts.

Details

Language :
English
ISSN :
1524-4628
Volume :
54
Issue :
7
Database :
MEDLINE
Journal :
Stroke
Publication Type :
Academic Journal
Accession number :
37313740
Full Text :
https://doi.org/10.1161/STROKEAHA.123.042496