Back to Search Start Over

Predicting Prostate Cancer Molecular Subtype With Deep Learning on Histopathologic Images.

Authors :
Erak E
Oliveira LD
Mendes AA
Dairo O
Ertunc O
Kulac I
Baena-Del Valle JA
Jones T
Hicks JL
Glavaris S
Guner G
Vidal ID
Markowski M
de la Calle C
Trock BJ
Meena A
Joshi U
Kondragunta C
Bonthu S
Singhal N
De Marzo AM
Lotan TL
Source :
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc [Mod Pathol] 2023 Oct; Vol. 36 (10), pp. 100247. Date of Electronic Publication: 2023 Jun 10.
Publication Year :
2023

Abstract

Microscopic examination of prostate cancer has failed to reveal a reproducible association between molecular and morphologic features. However, deep-learning algorithms trained on hematoxylin and eosin (H&E)-stained whole slide images (WSI) may outperform the human eye and help to screen for clinically-relevant genomic alterations. We created deep-learning algorithms to identify prostate tumors with underlying ETS-related gene (ERG) fusions or PTEN deletions using the following 4 stages: (1) automated tumor identification, (2) feature representation learning, (3) classification, and (4) explainability map generation. A novel transformer-based hierarchical architecture was trained on a single representative WSI of the dominant tumor nodule from a radical prostatectomy (RP) cohort with known ERG/PTEN status (n = 224 and n = 205, respectively). Two distinct vision transformer-based networks were used for feature extraction, and a distinct transformer-based model was used for classification. The ERG algorithm performance was validated across 3 RP cohorts, including 64 WSI from the pretraining cohort (AUC, 0.91) and 248 and 375 WSI from 2 independent RP cohorts (AUC, 0.86 and 0.89, respectively). In addition, we tested the ERG algorithm performance in 2 needle biopsy cohorts comprised of 179 and 148 WSI (AUC, 0.78 and 0.80, respectively). Focusing on cases with homogeneous (clonal) PTEN status, PTEN algorithm performance was assessed using 50 WSI reserved from the pretraining cohort (AUC, 0.81), 201 and 337 WSI from 2 independent RP cohorts (AUC, 0.72 and 0.80, respectively), and 151 WSI from a needle biopsy cohort (AUC, 0.75). For explainability, the PTEN algorithm was also applied to 19 WSI with heterogeneous (subclonal) PTEN loss, where the percentage tumor area with predicted PTEN loss correlated with that based on immunohistochemistry (r = 0.58, P = .0097). These deep-learning algorithms to predict ERG/PTEN status prove that H&E images can be used to screen for underlying genomic alterations in prostate cancer.<br /> (Copyright © 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1530-0285
Volume :
36
Issue :
10
Database :
MEDLINE
Journal :
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Publication Type :
Academic Journal
Accession number :
37307876
Full Text :
https://doi.org/10.1016/j.modpat.2023.100247