Back to Search
Start Over
Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132-Loaded Fe-MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer.
- Source :
-
Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2023 Aug; Vol. 10 (23), pp. e2301638. Date of Electronic Publication: 2023 Jun 11. - Publication Year :
- 2023
-
Abstract
- Abnormal epigenetic regulation is identified to correlate with cancer progression and renders tumor refractory and resistant to reactive oxygen species (ROS)-based anti-tumor actions. To address it, a sequential ubiquitination and phosphorylation epigenetics modulation strategy is developed and exemplified by the well-established Fe-metal-organic framework (Fe-MOF)-based chemodynamic therapy (CDT) nanoplatforms that load the 26S proteasome inhibitor (i.e., MG132). The encapsulated MG132 can blockade 26S proteasome, terminate ubiquitination, and further inhibit transcription factor phosphorylation (e.g., NF-κB p65), which can boost pro-apoptotic or misfolded protein accumulations, disrupt tumor homeostasis, and down-regulate driving genes expression of metastatic colorectal cancer (mCRC). Contributed by them, Fe-MOF-unlocked CDT is magnified to considerably elevate ROS content for repulsing mCRC, especially after combining with macrophage membrane coating-enabled tropism accumulation. Systematic experiments reveal the mechanism and signaling pathway of such a sequential ubiquitination and phosphorylation epigenetics modulation and explain how it could blockade ubiquitination and phosphorylation to liberate the therapy resistance to ROS and activate NF-κB-related acute immune responses. This unprecedented sequential epigenetics modulation lays a solid foundation to magnify oxidative stress and can serve as a general method to enhance other ROS-based anti-tumor methods.<br /> (© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 2198-3844
- Volume :
- 10
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- Advanced science (Weinheim, Baden-Wurttemberg, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 37303273
- Full Text :
- https://doi.org/10.1002/advs.202301638