Back to Search Start Over

Effect of Heterostructure-Modified Separator in Lithium-Sulfur Batteries.

Authors :
Pu J
Wang T
Tan Y
Fan S
Xue P
Source :
Small (Weinheim an der Bergstrasse, Germany) [Small] 2023 Oct; Vol. 19 (42), pp. e2303266. Date of Electronic Publication: 2023 Jun 09.
Publication Year :
2023

Abstract

Lithium-sulfur (Li-S) batteries with high energy density and low cost are the most promising competitor in the next generation of new energy reserve devices. However, there are still many problems that hinder its commercialization, mainly including shuttle of soluble polysulfides, slow reaction kinetics, and growth of Li dendrites. In order to solve above issues, various explorations have been carried out for various configurations, such as electrodes, separators, and electrolytes. Among them, the separator in contact with both anode and cathode is in a particularly special position. Reasonable design-modified material of separator can solve above key problems. Heterostructure engineering as a promising modification method can combine characteristics of different materials to generate synergistic effect at heterogeneous interface that is conducive to Li-S electrochemical behavior. This review not only elaborates the role of heterostructure-modified separators in dealing with above problems, but also analyzes the improvement of wettability and thermal stability of separators by modification of heterostructure materials, systematically clarifies its advantages, and summarizes some related progress in recent years. Finally, future development direction of heterostructure-based separator in Li-S batteries is given.<br /> (© 2023 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1613-6829
Volume :
19
Issue :
42
Database :
MEDLINE
Journal :
Small (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
37292047
Full Text :
https://doi.org/10.1002/smll.202303266