Back to Search
Start Over
Effects of undesired substances and their bioaccumulation on the black soldier fly larvae, Hermetia illucens (Diptera: Stratiomyidae)-a literature review.
- Source :
-
Environmental monitoring and assessment [Environ Monit Assess] 2023 Jun 09; Vol. 195 (7), pp. 823. Date of Electronic Publication: 2023 Jun 09. - Publication Year :
- 2023
-
Abstract
- Black soldier fly (BSF), Hermetia illucens (L.) (Diptera: Stratiomyidae), is predominantly reared on organic wastes and other unused complementary substrates. However, BSF may have a buildup of undesired substances in their body. The contamination of undesired substance, e.g., heavy metals, mycotoxins, and pesticides, in BSF mainly occurred during the feeding process in the larval stage. Yet, the pattern of accumulated contaminants in the bodies of BSF larvae (BSFL) is varied distinctively depending on the diets as well as the contaminant types and concentrations. Heavy metals, including cadmium, copper, arsenic, and lead, were reported to have accumulated in BSFL. In most cases, the cadmium, arsenic, and lead concentration in BSFL exceeded the recommended standard for heavy metals occurring in feed and food. Following the results concerning the accumulation of the undesired substance in BSFL's body, they did not affect the biological parameters of BSFL, unless the amounts of heavy metals in their diets are highly exceeding their thresholds. Meanwhile, a study on the fate of pesticides and mycotoxins in BSFL indicates that no bioaccumulation was detected for any of the target substances. In addition, dioxins, PCBs, PAHs, and pharmaceuticals did not accumulate in BSFL in the few existing studies. However, future studies are needed to assess the long-term effects of the aforementioned undesired substances on the demographic traits of BSF and to develop appropriate waste management technology. Since the end products of BSFL that are contaminated pose a threat to both human and animal health, their nutrition and production process must be well managed to create end products with a low contamination level to achieve a closed food cycle of BSF as animal feed.<br /> (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
Details
- Language :
- English
- ISSN :
- 1573-2959
- Volume :
- 195
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Environmental monitoring and assessment
- Publication Type :
- Academic Journal
- Accession number :
- 37291225
- Full Text :
- https://doi.org/10.1007/s10661-023-11186-w