Back to Search Start Over

Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis.

Authors :
Shehata MA
Saad AM
Kamel S
Stanietzky N
Roman-Colon AM
Morani AC
Elsayes KM
Jensen CT
Source :
Abdominal radiology (New York) [Abdom Radiol (NY)] 2023 Aug; Vol. 48 (8), pp. 2724-2756. Date of Electronic Publication: 2023 Jun 06.
Publication Year :
2023

Abstract

Objective: To perform a systematic literature review and meta-analysis of the two most common commercially available deep-learning algorithms for CT.<br />Methods: We used PubMed, Scopus, Embase, and Web of Science to conduct systematic searches for studies assessing the most common commercially available deep-learning CT reconstruction algorithms: True Fidelity (TF) and Advanced intelligent Clear-IQ Engine (AiCE) in the abdomen of human participants since only these two algorithms currently have adequate published data for robust systematic analysis.<br />Results: Forty-four articles fulfilled inclusion criteria. 32 studies evaluated TF and 12 studies assessed AiCE. DLR algorithms produced images with significantly less noise (22-57.3% less than IR) but preserved a desirable noise texture with increased contrast-to-noise ratios and improved lesion detectability on conventional CT. These improvements with DLR were similarly noted in dual-energy CT which was only assessed for a single vendor. Reported radiation reduction potential was 35.1-78.5%. Nine studies assessed observer performance with the two dedicated liver lesion studies being performed on the same vendor reconstruction (TF). These two studies indicate preserved low contrast liver lesion detection (> 5 mm) at CTDI <subscript>vol</subscript> 6.8 mGy (BMI 23.5 kg/m <superscript>2</superscript> ) to 12.2 mGy (BMI 29 kg/m <superscript>2</superscript> ). If smaller lesion detection and improved lesion characterization is needed, a CTDI <subscript>vol</subscript> of 13.6-34.9 mGy is needed in a normal weight to obese population. Mild signal loss and blurring have been reported at high DLR reconstruction strengths.<br />Conclusion: Deep learning reconstructions significantly improve image quality in CT of the abdomen. Assessment of other dose levels and clinical indications is needed. Careful choice of radiation dose levels is necessary, particularly for small liver lesion assessment.<br /> (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Details

Language :
English
ISSN :
2366-0058
Volume :
48
Issue :
8
Database :
MEDLINE
Journal :
Abdominal radiology (New York)
Publication Type :
Academic Journal
Accession number :
37280374
Full Text :
https://doi.org/10.1007/s00261-023-03966-2