Back to Search Start Over

Specific DMPK -promoter targeting by CRISPRi reverses myotonic dystrophy type 1-associated defects in patient muscle cells.

Authors :
Porquet F
Weidong L
Jehasse K
Gazon H
Kondili M
Blacher S
Massotte L
Di Valentin E
Furling D
Gillet NA
Klein AF
Seutin V
Willems L
Source :
Molecular therapy. Nucleic acids [Mol Ther Nucleic Acids] 2023 May 13; Vol. 32, pp. 857-871. Date of Electronic Publication: 2023 May 13 (Print Publication: 2023).
Publication Year :
2023

Abstract

Myotonic dystrophy type 1 (DM1) is a neuromuscular disease that originates from an expansion of CTG microsatellites in the 3' untranslated region of the DMPK gene, thus leading to the expression of transcripts containing expanded CUG repeats ( CUGexp ). The pathophysiology is explained by a toxic RNA gain of function where CUGexp RNAs form nuclear aggregates that sequester and alter the function of MBNL splicing factors, triggering splicing misregulation linked to the DM1 symptoms. There is currently no cure for DM1, and most therapeutic strategies aim at eliminating CUGexp-DMPK transcripts. Here, we investigate a DMPK -promoter silencing strategy using CRISPR interference as a new alternative approach. Different sgRNAs targeting the DMPK promoter are evaluated in DM1 patient muscle cells. The most effective guides allowed us to reduce the level of DMPK transcripts and CUGexp -RNA aggregates up to 80%. The CUGexp-DMPK repression corrects the overall transcriptome, including spliceopathy, and reverses a physiological parameter in DM1 muscle cells. Its action is specific and restricted to the DMPK gene, as confirmed by genome-wide expression analysis. Altogether, our findings highlight DMPK -promoter silencing by CRISPRi as a promising therapeutic approach for DM1.<br />Competing Interests: The authors declare no competing interests.<br /> (© 2023 The Authors.)

Details

Language :
English
ISSN :
2162-2531
Volume :
32
Database :
MEDLINE
Journal :
Molecular therapy. Nucleic acids
Publication Type :
Academic Journal
Accession number :
37273786
Full Text :
https://doi.org/10.1016/j.omtn.2023.05.007