Back to Search Start Over

Quantitative magnetic resonance imaging of in vitro gastrointestinal digestion of a bread and cheese meal.

Authors :
Musse M
Le Feunteun S
Collewet G
Ravilly M
Quellec S
Ossemond J
Morzel M
Challois S
Nau F
Lucas T
Source :
Food research international (Ottawa, Ont.) [Food Res Int] 2023 Jul; Vol. 169, pp. 112821. Date of Electronic Publication: 2023 Apr 14.
Publication Year :
2023

Abstract

The monitoring of food degradation during gastrointestinal digestion is essential in understanding food structure impacts on the bioaccessibility and bioavailability of nutrients. Magnetic Resonance Imaging (MRI) has the unique ability to access information on changes in multi-scale structural features of foods in a spatially resolved and non-destructive way. Our objective was to exploit various opportunities offered by MRI for monitoring starch, lipid and protein hydrolysis, as well as food particle breakdown during the semi-dynamic in vitro gastrointestinal digestion of complex foods combined in a meal. The meal consisted of French bread, hard cheese and water (drink), with a realistic distribution of bolus particle sizes. The MRI approach was reinforced by parallel chemical analysis of all macronutrients in the supernatant. By combining different imaging protocols, quantitative MRI provided insights into a number of phenomena at the level of the cheese and bread particles and within the liquid phase that are hard to access through conventional approaches. MRI thus revealed the progressive ingress of fluids into the bread crust and the release of the gas trapped in the crumb, the erosion of cheese particles, the creaming of fat, the disappearance of small food particles and changes in liquid phase composition. Excellent agreement was obtained between the quantitative parameters extracted from the MRI images and the results of the chemical analysis, demonstrating the strong potential of MRI for the monitoring of in vitro gastrointestinal digestion. The present study proposes further improvements to fully exploit the capabilities of MRI and constitutes an important step towards the extension of quantitative MRI to in vivo studies.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-7145
Volume :
169
Database :
MEDLINE
Journal :
Food research international (Ottawa, Ont.)
Publication Type :
Academic Journal
Accession number :
37254397
Full Text :
https://doi.org/10.1016/j.foodres.2023.112821