Back to Search Start Over

Genome-wide analysis of cuticle protein family genes in rice stem borer Chilo suppressalis: Insights into their role in environmental adaptation and insecticidal stress response.

Authors :
Zheng Y
Liu C
Wang S
Qian K
Feng Y
Yu F
Wang J
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2023 Jul 01; Vol. 242 (Pt 3), pp. 124989. Date of Electronic Publication: 2023 May 25.
Publication Year :
2023

Abstract

Insect cuticle plays a key role in insect survival, adaptation and prosperity by serving as the exoskeleton and the first barrier against environmental stresses. As the major components of insect cuticle, the diverse structural cuticle proteins (CPs) contribute to variation in physical properties and functions of cuticle. However, the roles of CPs in cuticular versatility, especially in the stress response or adaption, remain incompletely understood. In this study, we performed a genome-wide analysis of CP superfamily in the rice-boring pest Chilosuppressalis. A total of 211 CP genes were identified and their encoding proteins were classified into eleven families and three subfamilies (RR1, RR2, and RR3). The comparative genomic analysis of CPs revealed that C. suppressalis had fewer CP genes compared to other lepidopteran species, which largely resulted from a less expansion of his-rich RR2 genes involved in cuticular sclerotization, suggesting long-term boring life of C. suppressalis inside rice hosts might evolutionarily prefer cuticular elasticity rather than cuticular sclerotization. We also investigated the response pattern of all CP genes under insecticidal stresses. >50 % CsCPs were upregulated at least 2-fold under insecticidal stresses. Notably, the majority of the highly upregulated CsCPs formed gene pairs or gene clusters on chromosomes, indicating the rapid response of adjacent CsCPs to insecticidal stress. Most high-response CsCPs encoded AAPA/V/L motifs that are related to cuticular elasticity and >50 % of the sclerotization-related his-rich RR2 genes were also upregulated. These results suggested the potential roles of CsCPs in balancing the elasticity and sclerotization of cuticles, which is essential for the survival and adaptation of plant borers including C. suppressalis. Our study provides valuable information for further developing cuticle-based strategies of both pest management and biomimetic applications.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
242
Issue :
Pt 3
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
37244330
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.124989