Back to Search
Start Over
Mycobacterium leprae 's Infective Capacity Is Associated with Activation of Genes Involved in PGL-I Biosynthesis in a Schwann Cells Infection Model.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2023 May 13; Vol. 24 (10). Date of Electronic Publication: 2023 May 13. - Publication Year :
- 2023
-
Abstract
- Peripheral nerves and Schwann cells (SCs) are privileged and protected sites for initial colonization, survival, and spread of leprosy bacillus. Mycobacterium leprae strains that survive multidrug therapy show a metabolic inactivation that subsequently induces the recurrence of typical clinical manifestations of leprosy. Furthermore, the role of the cell wall phenolic glycolipid I (PGL-I) in the M. leprae internalization in SCs and the pathogenicity of M. leprae have been extensively known. This study assessed the infectivity in SCs of recurrent and non-recurrent M. leprae and their possible correlation with the genes involved in the PGL-I biosynthesis. The initial infectivity of non-recurrent strains in SCs was greater (27%) than a recurrent strain (6.5%). In addition, as the trials progressed, the infectivity of the recurrent and non-recurrent strains increased 2.5- and 2.0-fold, respectively; however, the maximum infectivity was displayed by non-recurrent strains at 12 days post-infection. On the other hand, qRT-PCR experiments showed that the transcription of key genes involved in PGL-I biosynthesis in non-recurrent strains was higher and faster (Day 3) than observed in the recurrent strain (Day 7). Thus, the results indicate that the capacity of PGL-I production is diminished in the recurrent strain, possibly affecting the infective capacity of these strains previously subjected to multidrug therapy. The present work opens the need to address more extensive and in-depth studies of the analysis of markers in the clinical isolates that indicate a possible future recurrence.
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 24
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 37240073
- Full Text :
- https://doi.org/10.3390/ijms24108727