Back to Search
Start Over
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2023 Jul; Vol. 299 (7), pp. 104855. Date of Electronic Publication: 2023 May 22. - Publication Year :
- 2023
-
Abstract
- Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.<br />Competing Interests: Conflict of interest The authors declare the following competing interest(s): L. B. and C. O. are scientific co-founders of Ambagon Therapeutics. C. O. and E. S. are employees of Ambagon Therapeutics.<br /> (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 299
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 37224961
- Full Text :
- https://doi.org/10.1016/j.jbc.2023.104855