Back to Search Start Over

Target-oriented deep learning-based image registration with individualized test-time adaptation.

Authors :
Sang Y
McNitt-Gray M
Yang Y
Cao M
Low D
Ruan D
Source :
Medical physics [Med Phys] 2023 Nov; Vol. 50 (11), pp. 7016-7026. Date of Electronic Publication: 2023 May 24.
Publication Year :
2023

Abstract

Background: A classic approach in medical image registration is to formulate an optimization problem based on the image pair of interest, and seek a deformation vector field (DVF) to minimize the corresponding objective, often iteratively. It has a clear focus on the targeted pair, but is typically slow. In contrast, more recent deep-learning-based registration offers a much faster alternative and can benefit from data-driven regularization. However, learning is a process to "fit" the training cohort, whose image or motion characteristics or both may differ from the pair of images to be tested, which is the ultimate goal of registration. Therefore, generalization gap poses a high risk with direct inference alone.<br />Purpose: In this study, we propose an individualized adaptation to improve test sample targeting, to achieve a synergy of efficiency and performance in registration.<br />Methods: Using a previously developed network with an integrated motion representation prior module as the implementation backbone, we propose to adapt the trained registration network further for image pairs at test time to optimize the individualized performance. The adaptation method was tested against various characteristics shifts caused by cross-protocol, cross-platform, and cross-modality, with test evaluation performed on lung CBCT, cardiac MRI, and lung MRI, respectively.<br />Results: Landmark-based registration errors and motion-compensated image enhancement results demonstrated significantly improved test registration performance from our method, compared to tuned classic B-spline registration and network solutions without adaptation.<br />Conclusions: We have developed a method to synergistically combine the effectiveness of pre-trained deep network and the target-centric perspective of optimization-based registration to improve performance on individual test data.<br /> (© 2023 American Association of Physicists in Medicine.)

Details

Language :
English
ISSN :
2473-4209
Volume :
50
Issue :
11
Database :
MEDLINE
Journal :
Medical physics
Publication Type :
Academic Journal
Accession number :
37222565
Full Text :
https://doi.org/10.1002/mp.16477