Back to Search Start Over

Opportunistic Screening: Radiology Scientific Expert Panel.

Authors :
Pickhardt PJ
Summers RM
Garrett JW
Krishnaraj A
Agarwal S
Dreyer KJ
Nicola GN
Source :
Radiology [Radiology] 2023 Jun; Vol. 307 (5), pp. e222044. Date of Electronic Publication: 2023 May 23.
Publication Year :
2023

Abstract

Radiologic tests often contain rich imaging data not relevant to the clinical indication. Opportunistic screening refers to the practice of systematically leveraging these incidental imaging findings. Although opportunistic screening can apply to imaging modalities such as conventional radiography, US, and MRI, most attention to date has focused on body CT by using artificial intelligence (AI)-assisted methods. Body CT represents an ideal high-volume modality whereby a quantitative assessment of tissue composition (eg, bone, muscle, fat, and vascular calcium) can provide valuable risk stratification and help detect unsuspected presymptomatic disease. The emergence of "explainable" AI algorithms that fully automate these measurements could eventually lead to their routine clinical use. Potential barriers to widespread implementation of opportunistic CT screening include the need for buy-in from radiologists, referring providers, and patients. Standardization of acquiring and reporting measures is needed, in addition to expanded normative data according to age, sex, and race and ethnicity. Regulatory and reimbursement hurdles are not insurmountable but pose substantial challenges to commercialization and clinical use. Through demonstration of improved population health outcomes and cost-effectiveness, these opportunistic CT-based measures should be attractive to both payers and health care systems as value-based reimbursement models mature. If highly successful, opportunistic screening could eventually justify a practice of standalone "intended" CT screening.<br /> (© RSNA, 2023.)

Details

Language :
English
ISSN :
1527-1315
Volume :
307
Issue :
5
Database :
MEDLINE
Journal :
Radiology
Publication Type :
Academic Journal
Accession number :
37219444
Full Text :
https://doi.org/10.1148/radiol.222044