Back to Search
Start Over
Single Nucleus Sequencing of Human Colon Myenteric Plexus-Associated Visceral Smooth Muscle Cells, Platelet Derived Growth Factor Receptor Alpha Cells, and Interstitial Cells of Cajal.
- Source :
-
Gastro hep advances [Gastro Hep Adv] 2023; Vol. 2 (3), pp. 380-394. Date of Electronic Publication: 2022 Dec 23. - Publication Year :
- 2023
-
Abstract
- Background and Aims: Smooth muscle cells (SMCs), interstitial cells of Cajal (ICCs), and platelet-derived growth factor receptor alpha (PDGFR α +) cells (P α Cs) form a functional syncytium in the bowel known as the "SIP syncytium." The SIP syncytium works in concert with the enteric nervous system (ENS) to coordinate bowel motility. However, our understanding of individual cell types that form this syncytium and how they interact with each other remains limited, with no prior single-cell RNAseq analyses focused on human SIP syncytium cells.<br />Methods: We analyzed single-nucleus RNA sequencing data from 10,749 human colon SIP syncytium cells (5572 SMC, 372 ICC, and 4805 P α C nuclei) derived from 15 individuals.<br />Results: Consistent with critical contractile and pacemaker functions and with known enteric nervous system interactions, SIP syncytium cell types express many ion channels, including mechanosensitive channels in ICCs and P α Cs. P α Cs also prominently express extracellular matrix-associated genes and the inhibitory neurotransmitter receptor for vasoactive intestinal peptide ( VIPR2 ), a novel finding. We identified 2 P α C clusters that differ in the expression of many ion channels and transcriptional regulators. Interestingly, SIP syncytium cells co-express 6 transcription factors ( FOS , MEIS1 , MEIS2 , PBX1 , SCMH1 , and ZBTB16 ) that may be part of a combinatorial signature that specifies these cells. Bowel region-specific differences in SIP syncytium gene expression may correlate with regional differences in function, with right (ascending) colon SMCs and P α Cs expressing more transcriptional regulators and ion channels than SMCs and P α Cs in left (sigmoid) colon.<br />Conclusion: These studies provide new insights into SIP syncytium biology that may be valuable for understanding bowel motility disorders and lead to future investigation of highlighted genes and pathways.<br />Competing Interests: Conflicts of Interest: This author discloses the following: R.O.H. was a consultant for BlueRock Therapeutics and served on a Scientific Advisory Panel for Takeda. The remaining authors disclose no conflicts.
Details
- Language :
- English
- ISSN :
- 2772-5723
- Volume :
- 2
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Gastro hep advances
- Publication Type :
- Academic Journal
- Accession number :
- 37206377
- Full Text :
- https://doi.org/10.1016/j.gastha.2022.12.004