Back to Search Start Over

Assembly and recognition mechanisms of glycosylated PEGylated polyallylamine phosphate nanoparticles: A fluorescence correlation spectroscopy and small angle X-ray scattering study.

Authors :
Perez Schmidt P
Luedtke T
Moretti P
Di Gianvincenzo P
Fernandez Leyes M
Espuche B
Amenitsch H
Wang G
Ritacco H
Polito L
Ortore MG
Moya SE
Source :
Journal of colloid and interface science [J Colloid Interface Sci] 2023 Sep; Vol. 645, pp. 448-457. Date of Electronic Publication: 2023 May 01.
Publication Year :
2023

Abstract

Hypothesis: Modification of polyallylamine hydrochloride (PAH) with heterobifunctional low molecular weight polyethylene glycol (PEG) (600 and 1395 Da), and subsequent attachment of mannose, glucose, or lactose sugars to PEG, can lead to formation of polyamine phosphate nanoparticles (PANs) with lectin binding affinity and narrow size distribution.<br />Experiments: Size, polydispersity, and internal structure of glycosylated PEGylated PANs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). Fluorescence correlation spectroscopy (FCS) was used to study the association of labelled glycol-PEGylated PANs. The number of polymer chains forming the nanoparticles was determined from the changes in amplitude of the cross-correlation function of the polymers after formation of the nanoparticles. SAXS and fluorescence cross-correlation spectroscopy were used to investigate the interaction of PANs with lectins: concanavalin A with mannose modified PANs, and jacalin with lactose modified ones.<br />Findings: Glyco-PEGylated PANs are highly monodispersed, with diameters of a few tens of nanometers and low charge, and a structure corresponding to spheres with Gaussian chains. FCS shows that the PANs are single chain nanoparticles or formed by two polymer chains. Concanavalin A and jacalin show specific interactions for the glyco-PEGylated PANs with higher affinity than bovine serum albumin.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023. Published by Elsevier Inc.)

Details

Language :
English
ISSN :
1095-7103
Volume :
645
Database :
MEDLINE
Journal :
Journal of colloid and interface science
Publication Type :
Academic Journal
Accession number :
37156153
Full Text :
https://doi.org/10.1016/j.jcis.2023.04.136