Back to Search Start Over

METTL3-Mediated m6A Modification of TRIF and MyD88 mRNAs Suppresses Innate Immunity in Teleost Fish, Miichthys miiuy.

Authors :
Geng S
Zheng W
Zhao Y
Xu T
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2023 Jul 01; Vol. 211 (1), pp. 130-139.
Publication Year :
2023

Abstract

Methyltransferase (METTL3), the most important N6-methyladenosine (m6A) writer, plays a vital role in regulating immune-related signaling pathways. However, the underlying mechanism of METTL3 action remains largely unknown, especially in lower vertebrates. The results of this study show that METTL3 inhibits innate immune response and promotes the infection of miiuy croaker, Miichthys miiuy, by Siniperca chuatsi rhabdovirus and Vibrio anguillarum. Significantly, the function of METTL3 in inhibiting immunity depends on its methylase activity. Mechanistically, METTL3 increases the methylation level of trif and myd88 mRNA, rendering them sensitive to degradation by the YTHDF2/3 reader proteins. By contrast, we found that the YTHDF1 reader protein promotes the translation of myd88 mRNA. In summary, these results indicate that METTL3-mediated m6A modification of trif and myd88 mRNAs suppresses innate immunity by inhibiting the TLR pathway, unveiling a molecular mechanism by which RNA methylation controls innate immunity to pathogens in the teleost fish.<br /> (Copyright © 2023 by The American Association of Immunologists, Inc.)

Details

Language :
English
ISSN :
1550-6606
Volume :
211
Issue :
1
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
37154684
Full Text :
https://doi.org/10.4049/jimmunol.2300033