Back to Search Start Over

The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes.

Authors :
Horani A
Gupta DK
Xu J
Xu H
Carmen Puga-Molina LD
Santi CM
Ramagiri S
Brennan SK
Pan J
Koenitzer JR
Huang T
Hyland RM
Gunsten SP
Tzeng SC
Strahle JM
Mill P
Mahjoub MR
Dutcher SK
Brody SL
Source :
JCI insight [JCI Insight] 2023 Jun 08; Vol. 8 (11). Date of Electronic Publication: 2023 Jun 08.
Publication Year :
2023

Abstract

DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.

Details

Language :
English
ISSN :
2379-3708
Volume :
8
Issue :
11
Database :
MEDLINE
Journal :
JCI insight
Publication Type :
Academic Journal
Accession number :
37104040
Full Text :
https://doi.org/10.1172/jci.insight.168836