Back to Search
Start Over
Long-term in-situ starvation and reactivation of co-digestion with food waste and corn straw in a continuous AnDMBR: Performance, sludge characteristics, and microorganism community.
- Source :
-
The Science of the total environment [Sci Total Environ] 2023 Jul 15; Vol. 882, pp. 163673. Date of Electronic Publication: 2023 Apr 23. - Publication Year :
- 2023
-
Abstract
- To explore the effects of in-situ starvation and reactivation in a continuous anaerobic dynamic membrane reactor (AnDMBR), the anaerobic co-digestion system of food waste and corn straw was firstly start-up and stability operated, and then stopped feeding substrate approximately 70 days. After long-term in-situ starvation, the continuous AnDMBR was reactivated using the same operation conditions and organic loading rate as the continuous AnDMBR used before in-situ starvation. Results shown that the anaerobic co-digestion of corn straw and food waste in the continuous AnDMBR can resume stable operation within 5 days, and the corresponding methane production of 1.38 ± 0.26 L/L/d was completely returned to the methane production before in-situ starvation (1.32 ± 0.10 L/L/d). Through analysis of the specific methanogenic activity and key enzyme activity of the digestate sludge, only the acetic acid degradation activity of methanogenic archaea can be partially recovered, however, the activities of lignocellulose enzyme (lignin peroxidase, laccase, and endoglucanase), hydrolase (α-glucosidase) and acidogenic enzyme (acetate kinas, butyrate kinase, and CoA-transferase) can be fully recovered. Analysis of microorganism community structure using metagenomic sequencing technology showed that starvation decreased the abundance of hydrolytic bacteria (Bacteroidetes and Firmicutes) and increased the abundance of small molecule-utilizing bacteria (Proteobacteria and Chloroflexi) due to lack of substrate during the long-term in-situ starvation stage. Furthermore, the microbial community structure and key functional microorganism still maintained and similar with that of starvation final stage even after long-term continuous reactivation. The reactor performance and sludge enzymes activity in the continuous AnDMBR co-digestion of food waste and corn straw can be well reactivated after long-term in-situ starvation, even though the microbial community structure can not be recovered to the initiating stage.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 882
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 37098397
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2023.163673