Back to Search Start Over

Quantum field lens coding and classification algorithm to predict measurement outcomes.

Authors :
Alipour PB
Gulliver TA
Source :
MethodsX [MethodsX] 2023 Mar 29; Vol. 10, pp. 102136. Date of Electronic Publication: 2023 Mar 29 (Print Publication: 2023).
Publication Year :
2023

Abstract

This study develops a method to implement a quantum field lens coding and classification algorithm for two quantum double-field (QDF) system models: 1- a QDF model, and 2- a QDF lens coding model by a DF computation (DFC). This method determines entanglement entropy (EE) by implementing QDF operators in a quantum circuit. The physical link between the two system models is a quantum field lens coding algorithm (QF-LCA), which is a QF lens distance-based, implemented on real N -qubit machines. This is with the possibility to train the algorithm for making strong predictions on phase transitions as the shared objective of both models. In both system models, QDF transformations are simulated by a DFC algorithm where QDF data are collected and analyzed to represent energy states and transitions, and determine entanglement based on EE. The method gives a list of steps to simulate and optimize any thermodynamic system on macro and micro-scale observations, as presented in this article:•The implementation of QF-LCA on quantum computers with EE measurement under a QDF transformation.•Validation of QF-LCA as implemented compared to quantum Fourier transform (QFT) and its inverse, QFT - 1 .•Quantum artificial intelligence (QAI) features by classifying QDF with strong measurement outcome predictions.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2023 The Author(s).)

Details

Language :
English
ISSN :
2215-0161
Volume :
10
Database :
MEDLINE
Journal :
MethodsX
Publication Type :
Academic Journal
Accession number :
37091949
Full Text :
https://doi.org/10.1016/j.mex.2023.102136