Back to Search
Start Over
Bv8 mediates myeloid cell migration and enhances malignancy of colorectal cancer.
- Source :
-
Frontiers in immunology [Front Immunol] 2023 Apr 05; Vol. 14, pp. 1158045. Date of Electronic Publication: 2023 Apr 05 (Print Publication: 2023). - Publication Year :
- 2023
-
Abstract
- Colorectal cancer (CRC) is the third most predominant malignancy in the world. Although the importance of immune system in cancer development has been well established, the underlying mechanisms remain to be investigated further. Here we studied a novel protein prokineticin 2 (Prok2, also known as Bv8) as a key pro-tumoral factor in CRC progression in in vitro and ex vivo settings. Human colorectal tumor tissues, myeloid cell lines (U937 cells and HL60 cells) and colorectal cancer cell line (Caco-2 cells) were used for various studies. Myeloid cell infiltration (especially neutrophils) and Bv8 accumulation were detected in human colorectal tumor tissue with immunostaining. The chemotactic effects of Bv8 on myeloid cells were presented in the transwell assay and chemotaxis assy. Cultured CRC cells treated with myeloid cells or Bv8 produced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF). Furthermore, ROS and VEGF acted as pro-angiogenesis buffer in myeloid cell-infiltrated CRC microenvironment. Moreover, myeloid cells or Bv8 enhanced energy consumption of glycolysis ATP and mitochondria ATP of CRC cells. Interestingly, myeloid cells increased CRC cell viability, but CRC cells decreased the viability of myeloid cells. ERK signalling pathway in CRC cells was activated in the presence of Bv8 or co-cultured myeloid cells. In conclusion, our data indicated the vital roles of Bv8 in myeloid cell infiltration and CRC development, suggesting that Bv8 may be a potential therapeutic target for colorectal cancer-related immunotherapy.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2023 Li, Chang, Cui, Zhao, Hu, O’Dea, Tirlapur, Balboni, Zhang, Ying and Ma.)
- Subjects :
- Humans
Vascular Endothelial Growth Factor A metabolism
Caco-2 Cells
Reactive Oxygen Species metabolism
Myeloid Cells metabolism
Cell Movement
Vascular Endothelial Growth Factors metabolism
Adenosine Triphosphate metabolism
Tumor Microenvironment
Neuropeptides metabolism
Colorectal Neoplasms pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1664-3224
- Volume :
- 14
- Database :
- MEDLINE
- Journal :
- Frontiers in immunology
- Publication Type :
- Academic Journal
- Accession number :
- 37090721
- Full Text :
- https://doi.org/10.3389/fimmu.2023.1158045