Back to Search
Start Over
Changes in metabolic landscapes shape divergent but distinct mutational signatures and cytotoxic consequences of redox stress.
- Source :
-
Nucleic acids research [Nucleic Acids Res] 2023 Jun 09; Vol. 51 (10), pp. 5056-5072. - Publication Year :
- 2023
-
Abstract
- Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents. NMR-based analysis of molecular outcomes of redox stress revealed profound dissimilarities in metabolic landscapes following exposure to hydrogen peroxide versus potassium bromate. The predominance of G to T substitutions in the mutational spectra distinguished potassium bromate from hydrogen peroxide and paraquat and mirrored the observed metabolic changes. We attributed these changes to the generation of uncommon oxidizing species in a reaction with thiol-containing antioxidants; a nearly total depletion of intracellular glutathione and a paradoxical augmentation of potassium bromate mutagenicity and toxicity by antioxidants. Our study provides the framework for understanding multidimensional processes triggered by agents collectively known as oxidants. Detection of increased mutational loads associated with potassium bromate-related mutational motifs in human tumors may be clinically relevant as a biomarker of this distinct type of redox stress.<br /> (Published by Oxford University Press on behalf of Nucleic Acids Research 2023.)
Details
- Language :
- English
- ISSN :
- 1362-4962
- Volume :
- 51
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Nucleic acids research
- Publication Type :
- Academic Journal
- Accession number :
- 37078607
- Full Text :
- https://doi.org/10.1093/nar/gkad305