Back to Search Start Over

Novel molecular requirements for CRISPR RNA-guided transposition.

Authors :
Walker MWG
Klompe SE
Zhang DJ
Sternberg SH
Source :
Nucleic acids research [Nucleic Acids Res] 2023 May 22; Vol. 51 (9), pp. 4519-4535.
Publication Year :
2023

Abstract

CRISPR-associated transposases (CASTs) direct DNA integration downstream of target sites using the RNA-guided DNA binding activity of nuclease-deficient CRISPR-Cas systems. Transposition relies on several key protein-protein and protein-DNA interactions, but little is known about the explicit sequence requirements governing efficient transposon DNA integration activity. Here, we exploit pooled library screening and high-throughput sequencing to reveal novel sequence determinants during transposition by the Type I-F Vibrio cholerae CAST system (VchCAST). On the donor DNA, large transposon end libraries revealed binding site nucleotide preferences for the TnsB transposase, as well as an additional conserved region that encoded a consensus binding site for integration host factor (IHF). Remarkably, we found that VchCAST requires IHF for efficient transposition, thus revealing a novel cellular factor involved in CRISPR-associated transpososome assembly. On the target DNA, we uncovered preferred sequence motifs at the integration site that explained previously observed heterogeneity with single-base pair resolution. Finally, we exploited our library data to design modified transposon variants that enable in-frame protein tagging. Collectively, our results provide new clues about the assembly and architecture of the paired-end complex formed between TnsB and the transposon DNA, and inform the design of custom payload sequences for genome engineering applications with CAST systems.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Details

Language :
English
ISSN :
1362-4962
Volume :
51
Issue :
9
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
37078593
Full Text :
https://doi.org/10.1093/nar/gkad270