Back to Search
Start Over
The in vivo functional significance of PUF hub partnerships in C. elegans germline stem cells.
- Source :
-
Development (Cambridge, England) [Development] 2023 May 01; Vol. 150 (9). Date of Electronic Publication: 2023 May 09. - Publication Year :
- 2023
-
Abstract
- PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.<br />Competing Interests: Competing interests The authors declare no competing or financial interests.<br /> (© 2023. Published by The Company of Biologists Ltd.)
Details
- Language :
- English
- ISSN :
- 1477-9129
- Volume :
- 150
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Development (Cambridge, England)
- Publication Type :
- Academic Journal
- Accession number :
- 37070766
- Full Text :
- https://doi.org/10.1242/dev.201705