Back to Search Start Over

Auditory neuropathy in mice and humans with Friedreich ataxia.

Authors :
Rance G
Carew P
Winata L
Sale P
Delatycki M
Sly D
Source :
Annals of clinical and translational neurology [Ann Clin Transl Neurol] 2023 Jun; Vol. 10 (6), pp. 953-963. Date of Electronic Publication: 2023 Apr 14.
Publication Year :
2023

Abstract

Objective: Recent studies have found that human Friedreich ataxia patients have dysfunction of transmission in the auditory neural pathways. Here, we characterize hearing deficits in a mouse model of Friedreich ataxia and compare these to a clinical population.<br />Methods: Sixteen mice with a C57BL/6 background were evaluated. Eight were YG8Pook/J animals (Friedreich ataxia phenotype) and eight wild-type mice served as controls. Auditory function was assessed between ages 6 and 12 months using otoacoustic emissions and auditory steady-state responses. At study end, motor deficit was assessed using Rotorod testing and inner ear tissue was examined. Thirty-seven individuals with Friedreich ataxia underwent auditory steady-state evoked potential assessment and response amplitudes were compared with functional hearing ability (speech perception-in-noise) and disease status was measured by the Friedreich Ataxia Rating Scale.<br />Results: The YG8Pook/J mice showed anatomic and functional abnormality. While otoacoustic emission responses from the cochlear hair cells were mildly affected, auditory steady-state responses showed exaggerated amplitude reductions as the animals aged with Friedreich ataxia mice showing a 50-60% decrease compared to controls who showed only a 20-25% reduction (F <subscript>(2,94)</subscript>  = 17.90, p < 0.00). Furthermore, the YG8Pook/J mice had fewer surviving spiral ganglion neurons, indicating greater degeneration of the auditory nerve. Neuronal density was 20-25% lower depending on cochlear region (F <subscript>(1, 30)</subscript>  = 45.02, p < 0.001). In human participants, auditory steady-state response amplitudes were correlated with both Consonant-Nucleus-Consonant word scores and Friedreich Ataxia Rating Scale score.<br />Interpretation: This study found degenerative changes in auditory structure and function in YG8Pook/J mice, indicating that auditory measures in these animals may provide a model for testing Friedreich ataxia treatments. In addition, auditory steady-state response findings in a clinical population suggested that these scalp-recorded potentials may serve as an objective biomarker for disease progress in affected individuals.<br /> (© 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.)

Details

Language :
English
ISSN :
2328-9503
Volume :
10
Issue :
6
Database :
MEDLINE
Journal :
Annals of clinical and translational neurology
Publication Type :
Academic Journal
Accession number :
37060174
Full Text :
https://doi.org/10.1002/acn3.51777