Back to Search Start Over

Exercise training remodels inguinal white adipose tissue through adaptations in innervation, vascularization, and the extracellular matrix.

Authors :
Nigro P
Vamvini M
Yang J
Caputo T
Ho LL
Carbone NP
Papadopoulos D
Conlin R
He J
Hirshman MF
White JD
Robidoux J
Hickner RC
Nielsen S
Pedersen BK
Kellis M
Middelbeek RJW
Goodyear LJ
Source :
Cell reports [Cell Rep] 2023 Apr 25; Vol. 42 (4), pp. 112392. Date of Electronic Publication: 2023 Apr 13.
Publication Year :
2023

Abstract

Inguinal white adipose tissue (iWAT) is essential for the beneficial effects of exercise training on metabolic health. The underlying mechanisms for these effects are not fully understood, and here, we test the hypothesis that exercise training results in a more favorable iWAT structural phenotype. Using biochemical, imaging, and multi-omics analyses, we find that 11 days of wheel running in male mice causes profound iWAT remodeling including decreased extracellular matrix (ECM) deposition and increased vascularization and innervation. We identify adipose stem cells as one of the main contributors to training-induced ECM remodeling, show that the PRDM16 transcriptional complex is necessary for iWAT remodeling and beiging, and discover neuronal growth regulator 1 (NEGR1) as a link between PRDM16 and neuritogenesis. Moreover, we find that training causes a shift from hypertrophic to insulin-sensitive adipocyte subpopulations. Exercise training leads to remarkable adaptations to iWAT structure and cell-type composition that can confer beneficial changes in tissue metabolism.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
2211-1247
Volume :
42
Issue :
4
Database :
MEDLINE
Journal :
Cell reports
Publication Type :
Academic Journal
Accession number :
37058410
Full Text :
https://doi.org/10.1016/j.celrep.2023.112392