Back to Search Start Over

Modeling a pesticide remediation strategy for preparative liquid chromatography using high-performance liquid chromatography.

Authors :
Cuchiaro J
Baumgartner J
Reynolds MM
Source :
Journal of cannabis research [J Cannabis Res] 2023 Apr 13; Vol. 5 (1), pp. 13. Date of Electronic Publication: 2023 Apr 13.
Publication Year :
2023

Abstract

Background: Cannabis sativa L. also known as industrial hemp, is primarily cultivated as source material for cannabinoids cannabidiol (CBD) and ∆9-tetrahydrocannabinol (∆9-THC). Pesticide contamination during plant growth is a common issue in the cannabis industry which can render plant biomass and products made from contaminated material unusable. Remediation strategies to ensure safety compliance are vital to the industry, and special consideration should be given to methods that are non-destructive to concomitant cannabinoids. Preparative liquid chromatography (PLC) is an attractive strategy for remediating pesticide contaminants while also facilitating targeted isolation cannabinoids in cannabis biomass.<br />Methods: The present study evaluated the benchtop-scale suitability of pesticide remediation by liquid chromatographic eluent fractionation, by comparing retention times of 11 pesticides relative to 26 cannabinoids. The ten pesticides evaluated for retention times are clothianidin, imidacloprid, piperonyl butoxide, pyrethrins (I/II mixture), diuron, permethrin, boscalid, carbaryl, spinosyn A, and myclobutanil. Analytes were separated prior to quantification on an Agilent Infinity II 1260 high performance liquid chromatography with diode array detection (HPLC-DAD). The detection wavelengths used were 208, 220, 230, and 240 nm. Primary studies were performed using an Agilent InfinityLab Poroshell 120 EC-C18 3.0 × 50 mm column with 2.7 μm particle diameter, using a binary gradient. Preliminary studies on Phenomenex Luna 10 μm C18 PREP stationary phase were performed using a 150 × 4.6 mm column.<br />Results: The retention times of standards and cannabis matrices were evaluated. The matrices used were raw cannabis flower, ethanol crude extract, CO <subscript>2</subscript> crude extract, distillate, distillation mother liquors, and distillation bottoms. The pesticides clothianidin, imidacloprid, carbaryl, diuron, spinosyn A, and myclobutanil eluted in the first 3.6 min, and all cannabinoids (except for 7-OH-CBD) eluted in the final 12.6 min of the 19-minute gradient for all matrices evaluated. The elution times of 7-OH-CBD and boscalid were 3.44 and 3.55 min, respectively.<br />Discussion: 7-OH-CBD is a metabolite of CBD and was not observed in the cannabis matrices evaluated. Thus, the present method is suitable for separating 7/11 pesticides and 25/26 cannabinoids tested in the six cannabis matrices tested. 7-OH-CBD, pyrethrins I and II (RT <subscript>A</subscript> : 6.8 min, RT <subscript>B</subscript> : 10.5 min), permethrin (RT <subscript>A</subscript> : 11.9 min, RT <subscript>B</subscript> : 12.2 min), and piperonyl butoxide (RT <subscript>A</subscript> : 8.3 min, RT <subscript>B</subscript> : 11.7 min), will require additional fractionation or purification steps.<br />Conclusions: The benchtop method was demonstrated have congruent elution profiles using preparative-scale stationary phase. The resolution of pesticides from cannabinoids in this method indicates that eluent fractionation is a highly attractive industrial solution for pesticide remediation of contaminated cannabis materials and targeted isolation of cannabinoids.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
2522-5782
Volume :
5
Issue :
1
Database :
MEDLINE
Journal :
Journal of cannabis research
Publication Type :
Academic Journal
Accession number :
37055853
Full Text :
https://doi.org/10.1186/s42238-023-00172-1