Back to Search Start Over

The MotoNet: A 3 Tesla MRI-Conditional EEG Net with Embedded Motion Sensors.

Authors :
Levitt J
van der Kouwe A
Jeong H
Lewis LD
Bonmassar G
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Mar 28; Vol. 23 (7). Date of Electronic Publication: 2023 Mar 28.
Publication Year :
2023

Abstract

We introduce a new electroencephalogram (EEG) net, which will allow clinicians to monitor EEG while tracking head motion. Motion during MRI limits patient scans, especially of children with epilepsy. EEG is also severely affected by motion-induced noise, predominantly ballistocardiogram (BCG) noise due to the heartbeat.<br />Methods: The MotoNet was built using polymer thick film (PTF) EEG leads and motion sensors on opposite sides in the same flex circuit. EEG/motion measurements were made with a standard commercial EEG acquisition system in a 3 Tesla (T) MRI. A Kalman filtering-based BCG correction tool was used to clean the EEG in healthy volunteers.<br />Results: MRI safety studies in 3 T confirmed the maximum heating below 1 °C. Using an MRI sequence with spatial localization gradients only, the position of the head was linearly correlated with the average motion sensor output. Kalman filtering was shown to reduce the BCG noise and recover artifact-clean EEG.<br />Conclusions: The MotoNet is an innovative EEG net design that co-locates 32 EEG electrodes with 32 motion sensors to improve both EEG and MRI signal quality. In combination with custom gradients, the position of the net can, in principle, be determined. In addition, the motion sensors can help reduce BCG noise.

Details

Language :
English
ISSN :
1424-8220
Volume :
23
Issue :
7
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
37050598
Full Text :
https://doi.org/10.3390/s23073539