Back to Search Start Over

Identification and diagnosis of mammographic malignant architectural distortion using a deep learning based mask regional convolutional neural network.

Authors :
Liu Y
Tong Y
Wan Y
Xia Z
Yao G
Shang X
Huang Y
Chen L
Chen DQ
Liu B
Source :
Frontiers in oncology [Front Oncol] 2023 Mar 22; Vol. 13, pp. 1119743. Date of Electronic Publication: 2023 Mar 22 (Print Publication: 2023).
Publication Year :
2023

Abstract

Background: Architectural distortion (AD) is a common imaging manifestation of breast cancer, but is also seen in benign lesions. This study aimed to construct deep learning models using mask regional convolutional neural network (Mask-RCNN) for AD identification in full-field digital mammography (FFDM) and evaluate the performance of models for malignant AD diagnosis.<br />Methods: This retrospective diagnostic study was conducted at the Second Affiliated Hospital of Guangzhou University of Chinese Medicine between January 2011 and December 2020. Patients with AD in the breast in FFDM were included. Machine learning models for AD identification were developed using the Mask RCNN method. Receiver operating characteristics (ROC) curves, their areas under the curve (AUCs), and recall/sensitivity were used to evaluate the models. Models with the highest AUCs were selected for malignant AD diagnosis.<br />Results: A total of 349 AD patients (190 with malignant AD) were enrolled. EfficientNetV2, EfficientNetV1, ResNext, and ResNet were developed for AD identification, with AUCs of 0.89, 0.87, 0.81 and 0.79. The AUC of EfficientNetV2 was significantly higher than EfficientNetV1 (0.89 vs. 0.78, P=0.001) for malignant AD diagnosis, and the recall/sensitivity of the EfficientNetV2 model was 0.93.<br />Conclusion: The Mask-RCNN-based EfficientNetV2 model has a good diagnostic value for malignant AD.<br />Competing Interests: Author YT was employed by the Shanghai Yanghe Huajian Artificial Intelligence Technology Co., Ltd, Shanghai, China. Author DC was employed by AI Research Lab, Boston Meditech Group, Burlington, USA. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2023 Liu, Tong, Wan, Xia, Yao, Shang, Huang, Chen, Chen and Liu.)

Details

Language :
English
ISSN :
2234-943X
Volume :
13
Database :
MEDLINE
Journal :
Frontiers in oncology
Publication Type :
Academic Journal
Accession number :
37035200
Full Text :
https://doi.org/10.3389/fonc.2023.1119743