Back to Search Start Over

Nanopore-based disease diagnosis using pathogen-derived tryptic peptides from serum.

Authors :
Zheng W
Saliba JG
Wei X
Shu Q
Pierson LM
Mao L
Liu C
Lyon CJ
Li CZ
Wimley WC
Hu TY
Source :
Nano today [Nano Today] 2022 Aug; Vol. 45. Date of Electronic Publication: 2022 Jun 10.
Publication Year :
2022

Abstract

Nanopore sensors have shown great utility in nucleic acid detection and sequencing approaches. Recent studies also indicate that current signatures produced by peptide-nanopore interactions can distinguish high purity peptide mixtures, but the utility of nanopore sensors in clinical applications still needs to be explored due to the inherent complexity of clinical specimens. To fill this gap between research and clinical nanopore applications, we describe a methodology to select peptide biomarkers suitable for use in an immunoprecipitation-coupled nanopore (IP-NP) assay, based on their pathogen specificity, antigenicity, charge, water solubility and ability to produce a characteristic nanopore interaction signature. Using tuberculosis as a proof-of-principle example in a disease that can be challenging to diagnose, we demonstrate that a peptide identified by this approach produced high-affinity antibodies and yielded a characteristic peptide signature that was detectable over a broad linear range, to detect and quantify a pathogen-derived peptide from digested human serum samples with high sensitivity and specificity. This nanopore signal distinguished serum from a TB case, non-disease controls, and from a TB-case after extended anti-TB treatment. We believe this assay approach should be readily adaptable to other infectious and chronic diseases that can be diagnosed by peptide biomarkers.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Details

Language :
English
ISSN :
1748-0132
Volume :
45
Database :
MEDLINE
Journal :
Nano today
Publication Type :
Academic Journal
Accession number :
37034182
Full Text :
https://doi.org/10.1016/j.nantod.2022.101515