Back to Search
Start Over
Combining biological denitrification and electricity generation in methane-powered microbial fuel cells.
- Source :
-
Journal of environmental sciences (China) [J Environ Sci (China)] 2023 Aug; Vol. 130, pp. 212-222. Date of Electronic Publication: 2022 Oct 22. - Publication Year :
- 2023
-
Abstract
- Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells (MFCs) and denitrifying anaerobic methane oxidation (DAMO). However, these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes. Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs. The results showed that methane successfully fueled both electrogenesis and denitrification. Importantly, the maximum nitrate removal rate was significantly enhanced from (1.4 ± 0.8) to (18.4 ± 1.2) mg N/(L·day) by an electrogenic process. In the presence of DAMO, the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143 ± 12 mW/m <superscript>2</superscript> . Electrochemical analyses demonstrated that some redox substances (e.g. riboflavin) were likely involved in electrogenesis and also in the denitrification process. High-throughput sequencing indicated that the methanogen Methanobacterium, a close relative of Methanobacterium espanolae, catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers (e.g., Azoarcus). This work provides an effective strategy for improving DAMO in methane-powered MFCs, and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2022. Published by Elsevier B.V.)
Details
- Language :
- English
- ISSN :
- 1001-0742
- Volume :
- 130
- Database :
- MEDLINE
- Journal :
- Journal of environmental sciences (China)
- Publication Type :
- Academic Journal
- Accession number :
- 37032037
- Full Text :
- https://doi.org/10.1016/j.jes.2022.10.013