Cite
Data-driven analysis to understand long COVID using electronic health records from the RECOVER initiative.
MLA
Zang, Chengxi, et al. “Data-Driven Analysis to Understand Long COVID Using Electronic Health Records from the RECOVER Initiative.” Nature Communications, vol. 14, no. 1, Apr. 2023, p. 1948. EBSCOhost, https://doi.org/10.1038/s41467-023-37653-z.
APA
Zang, C., Zhang, Y., Xu, J., Bian, J., Morozyuk, D., Schenck, E. J., Khullar, D., Nordvig, A. S., Shenkman, E. A., Rothman, R. L., Block, J. P., Lyman, K., Weiner, M. G., Carton, T. W., Wang, F., & Kaushal, R. (2023). Data-driven analysis to understand long COVID using electronic health records from the RECOVER initiative. Nature Communications, 14(1), 1948. https://doi.org/10.1038/s41467-023-37653-z
Chicago
Zang, Chengxi, Yongkang Zhang, Jie Xu, Jiang Bian, Dmitry Morozyuk, Edward J Schenck, Dhruv Khullar, et al. 2023. “Data-Driven Analysis to Understand Long COVID Using Electronic Health Records from the RECOVER Initiative.” Nature Communications 14 (1): 1948. doi:10.1038/s41467-023-37653-z.