Back to Search Start Over

Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes.

Authors :
Narita T
Higashijima Y
Kilic S
Liebner T
Walter J
Choudhary C
Source :
Nature genetics [Nat Genet] 2023 Apr; Vol. 55 (4), pp. 679-692. Date of Electronic Publication: 2023 Apr 06.
Publication Year :
2023

Abstract

Chromatin features are widely used for genome-scale mapping of enhancers. However, discriminating active enhancers from other cis-regulatory elements, predicting enhancer strength and identifying their target genes is challenging. Here we establish histone H2B N-terminus multisite lysine acetylation (H2BNTac) as a signature of active enhancers. H2BNTac prominently marks candidate active enhancers and a subset of promoters and discriminates them from ubiquitously active promoters. Two mechanisms underlie the distinct H2BNTac specificity: (1) unlike H3K27ac, H2BNTac is specifically catalyzed by CBP/p300; (2) H2A-H2B, but not H3-H4, are rapidly exchanged through transcription-induced nucleosome remodeling. H2BNTac-positive candidate enhancers show a high validation rate in orthogonal enhancer activity assays and a vast majority of endogenously active enhancers are marked by H2BNTac and H3K27ac. Notably, H2BNTac intensity predicts enhancer strength and outperforms current state-of-the-art models in predicting CBP/p300 target genes. These findings have broad implications for generating fine-grained enhancer maps and modeling CBP/p300-dependent gene regulation.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
1546-1718
Volume :
55
Issue :
4
Database :
MEDLINE
Journal :
Nature genetics
Publication Type :
Academic Journal
Accession number :
37024579
Full Text :
https://doi.org/10.1038/s41588-023-01348-4