Back to Search
Start Over
[Chrysin alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis in rats].
- Source :
-
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica [Zhongguo Zhong Yao Za Zhi] 2023 Mar; Vol. 48 (6), pp. 1597-1605. - Publication Year :
- 2023
-
Abstract
- The purpose of this study is to investigate whether chrysin reduces cerebral ischemia-reperfusion injury(CIRI) by inhi-biting ferroptosis in rats. Male SD rats were randomly divided into a sham group, a model group, high-, medium-, and low-dose chrysin groups(200, 100, and 50 mg·kg~(-1)), and a positive drug group(Ginaton, 21.6 mg·kg~(-1)). The CIRI model was induced in rats by transient middle cerebral artery occlusion(tMCAO). The indexes were evaluated and the samples were taken 24 h after the operation. The neurological deficit score was used to detect neurological function. The 2,3,5-triphenyl tetrazolium chloride(TTC) staining was used to detect the cerebral infarction area. Hematoxylin-eosin(HE) staining and Nissl staining were used to observe the morphological structure of brain tissues. Prussian blue staining was used to observe the iron accumulation in the brain. Total iron, lipid pero-xide, and malondialdehyde in serum and brain tissues were detected by biochemical reagents. Real-time quantitative polymerase chain reaction(RT-qPCR), immunohistochemistry, and Western blot were used to detect mRNA and protein expression of solute carrier fa-mily 7 member 11(SLC7A11), transferrin receptor 1(TFR1), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long chain family member 4(ACSL4), and prostaglandin-endoperoxide synthase 2(PTGS2) in brain tissues. Compared with the model group, the groups with drug intervention showed restored neurological function, decreased cerebral infarction rate, and alleviated pathological changes. The low-dose chrysin group was selected as the optimal dosing group. Compared with the model group, the chrysin groups showed reduced content of total iron, lipid peroxide, and malondialdehyde in brain tissues and serum, increased mRNA and protein expression levels of SLC7A11 and GPX4, and decreased mRNA and protein expression levels of TFR1, PTGS2, and ACSL4. Chrysin may regulate iron metabolism via regulating the related targets of ferroptosis and inhibit neuronal ferroptosis induced by CIRI.
- Subjects :
- Rats
Male
Animals
Rats, Sprague-Dawley
Signal Transduction
Cyclooxygenase 2 metabolism
RNA, Messenger
Cerebral Infarction
Malondialdehyde
Infarction, Middle Cerebral Artery
Ferroptosis
Brain Ischemia drug therapy
Brain Ischemia genetics
Brain Ischemia metabolism
Reperfusion Injury drug therapy
Reperfusion Injury genetics
Reperfusion Injury metabolism
Subjects
Details
- Language :
- Chinese
- ISSN :
- 1001-5302
- Volume :
- 48
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
- Publication Type :
- Academic Journal
- Accession number :
- 37005848
- Full Text :
- https://doi.org/10.19540/j.cnki.cjcmm.20221201.705