Back to Search Start Over

Evolutionary and Genomic Diversity of True Polyploidy in Tetrapods.

Authors :
Mezzasalma M
Brunelli E
Odierna G
Guarino FM
Source :
Animals : an open access journal from MDPI [Animals (Basel)] 2023 Mar 12; Vol. 13 (6). Date of Electronic Publication: 2023 Mar 12.
Publication Year :
2023

Abstract

True polyploid organisms have more than two chromosome sets in their somatic and germline cells. Polyploidy is a major evolutionary force and has played a significant role in the early genomic evolution of plants, different invertebrate taxa, chordates, and teleosts. However, the contribution of polyploidy to the generation of new genomic, ecological, and species diversity in tetrapods has traditionally been underestimated. Indeed, polyploidy represents an important pathway of genomic evolution, occurring in most higher-taxa tetrapods and displaying a variety of different forms, genomic configurations, and biological implications. Herein, we report and discuss the available information on the different origins and evolutionary and ecological significance of true polyploidy in tetrapods. Among the main tetrapod lineages, modern amphibians have an unparalleled diversity of polyploids and, until recently, they were considered to be the only vertebrates with closely related diploid and polyploid bisexual species or populations. In reptiles, polyploidy was thought to be restricted to squamates and associated with parthenogenesis. In birds and mammals, true polyploidy has generally been considered absent (non-tolerated). These views are being changed due to an accumulation of new data, and the impact as well as the different evolutionary and ecological implications of polyploidy in tetrapods, deserve a broader evaluation.

Details

Language :
English
ISSN :
2076-2615
Volume :
13
Issue :
6
Database :
MEDLINE
Journal :
Animals : an open access journal from MDPI
Publication Type :
Academic Journal
Accession number :
36978574
Full Text :
https://doi.org/10.3390/ani13061033