Back to Search Start Over

Artificial intelligence in public health: the potential of epidemic early warning systems.

Authors :
MacIntyre CR
Chen X
Kunasekaran M
Quigley A
Lim S
Stone H
Paik HY
Yao L
Heslop D
Wei W
Sarmiento I
Gurdasani D
Source :
The Journal of international medical research [J Int Med Res] 2023 Mar; Vol. 51 (3), pp. 3000605231159335.
Publication Year :
2023

Abstract

The use of artificial intelligence (AI) to generate automated early warnings in epidemic surveillance by harnessing vast open-source data with minimal human intervention has the potential to be both revolutionary and highly sustainable. AI can overcome the challenges faced by weak health systems by detecting epidemic signals much earlier than traditional surveillance. AI-based digital surveillance is an adjunct to-not a replacement of-traditional surveillance and can trigger early investigation, diagnostics and responses at the regional level. This narrative review focuses on the role of AI in epidemic surveillance and summarises several current epidemic intelligence systems including ProMED-mail, HealthMap, Epidemic Intelligence from Open Sources, BlueDot, Metabiota, the Global Biosurveillance Portal, Epitweetr and EPIWATCH. Not all of these systems are AI-based, and some are only accessible to paid users. Most systems have large volumes of unfiltered data; only a few can sort and filter data to provide users with curated intelligence. However, uptake of these systems by public health authorities, who have been slower to embrace AI than their clinical counterparts, is low. The widespread adoption of digital open-source surveillance and AI technology is needed for the prevention of serious epidemics.

Details

Language :
English
ISSN :
1473-2300
Volume :
51
Issue :
3
Database :
MEDLINE
Journal :
The Journal of international medical research
Publication Type :
Academic Journal
Accession number :
36967669
Full Text :
https://doi.org/10.1177/03000605231159335