Back to Search Start Over

Engineering design of asymmetric halloysite/chitosan/collagen sponge with hydrophobic coating for high-performance hemostasis dressing.

Authors :
Lin X
Feng Y
He Y
Ding S
Liu M
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2023 May 15; Vol. 237, pp. 124148. Date of Electronic Publication: 2023 Mar 22.
Publication Year :
2023

Abstract

Uncontrolled massive hemorrhage is a crucial cause of death, and developing efficient hemostatic materials are of great medical importance. Herein, we prepared a halloysite-chitosan-collagen composite sponge by directional freeze-drying method and coated the sponge with hydrophobic polydimethylsiloxane coating for rapid and effective hemostasis. The aligned channel structure of the sponge with a pore size of ~30 μm was beneficial for the transport of blood. Morphology and spectrum results suggested that chitosan and collagen are capable of adsorbing on the outer surface of HNTs due to the hydrogen bonding and electrostatic attractions. The directional freeze-dried sponge absorbed the majority of the blood within 10 s, and that process essentially was completed in 30 s, which are faster than its non-directional counterpart. The composite sponges exhibited high antibacterial properties towards E. coli and S. aureus, and they are non-cytotoxic towards mouse fibroblasts and have high hemocompatibility. The hemostatic dressing avoided unnecessary blood loss because of excessive blood absorption. In vivo experiments of rats also confirmed the ability of the asymmetric sponges to rapidly clot and reduce reducing blood loss. This work developed a high-performance and hemostatic dressing by material design and processing technique, which shows a promising application in wound healing.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
237
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
36958442
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.124148