Back to Search Start Over

Nanopore-based enrichment of antimicrobial resistance genes - a case-based study.

Authors :
Viehweger A
Marquet M
Hölzer M
Dietze N
Pletz MW
Brandt C
Source :
GigaByte (Hong Kong, China) [GigaByte] 2023 Jan 25; Vol. 2023, pp. gigabyte75. Date of Electronic Publication: 2023 Jan 25 (Print Publication: 2023).
Publication Year :
2023

Abstract

Rapid screening of hospital admissions to detect asymptomatic carriers of resistant bacteria can prevent pathogen outbreaks. However, the resulting isolates rarely have their genome sequenced due to cost constraints and long turn-around times to get and process the data, limiting their usefulness to the practitioner. Here we used real-time, on-device target enrichment ("adaptive") sequencing as a highly multiplexed assay covering 1,147 antimicrobial resistance genes. We compared its utility against standard and metagenomic sequencing, focusing on an isolate of Raoultella ornithinolytica harbouring three carbapenemases ( NDM , KPC , VIM ). Based on this experimental data, we then modelled the influence of several variables on the enrichment results and predicted the large effect of nucleotide identity (higher is better) and read length (shorter is better). Lastly, we showed how all relevant resistance genes are detected using adaptive sequencing on a miniature ("Flongle") flow cell, motivating its use in a clinical setting to monitor similar cases and their surroundings.<br />Competing Interests: AV has received travel expenses to speak at Oxford Nanopore meetings. AV, CB and MH are co-founders of nanozoo GmbH and hold shares in the company.<br /> (© The Author(s) 2023.)

Details

Language :
English
ISSN :
2709-4715
Volume :
2023
Database :
MEDLINE
Journal :
GigaByte (Hong Kong, China)
Publication Type :
Academic Journal
Accession number :
36949817
Full Text :
https://doi.org/10.46471/gigabyte.75