Back to Search Start Over

Atrial fibrillation ablation outcome prediction with a machine learning fusion framework incorporating cardiac computed tomography.

Authors :
Razeghi O
Kapoor R
Alhusseini MI
Fazal M
Tang S
Roney CH
Rogers AJ
Lee A
Wang PJ
Clopton P
Rubin DL
Narayan SM
Niederer S
Baykaner T
Source :
Journal of cardiovascular electrophysiology [J Cardiovasc Electrophysiol] 2023 May; Vol. 34 (5), pp. 1164-1174. Date of Electronic Publication: 2023 Apr 27.
Publication Year :
2023

Abstract

Background: Structural changes in the left atrium (LA) modestly predict outcomes in patients undergoing catheter ablation for atrial fibrillation (AF). Machine learning (ML) is a promising approach to personalize AF management strategies and improve predictive risk models after catheter ablation by integrating atrial geometry from cardiac computed tomography (CT) scans and patient-specific clinical data. We hypothesized that ML approaches based on a patient's specific data can identify responders to AF ablation.<br />Methods: Consecutive patients undergoing AF ablation, who had preprocedural CT scans, demographics, and 1-year follow-up data, were included in the study for a retrospective analysis. The inputs of models were CT-derived morphological features from left atrial segmentation (including the shape, volume of the LA, LA appendage, and pulmonary vein ostia) along with deep features learned directly from raw CT images, and clinical data. These were merged intelligently in a framework to learn their individual importance and produce the optimal classification.<br />Results: Three hundred twenty-one patients (64.2 ± 10.6 years, 69% male, 40% paroxysmal AF) were analyzed. Post 10-fold nested cross-validation, the model trained to intelligently merge and learn appropriate weights for clinical, morphological, and imaging data (AUC 0.821) outperformed those trained solely on clinical data (AUC 0.626), morphological (AUC 0.659), or imaging data (AUC 0.764).<br />Conclusion: Our ML approach provides an end-to-end automated technique to predict AF ablation outcomes using deep learning from CT images, derived structural properties of LA, augmented by incorporation of clinical data in a merged ML framework. This can help develop personalized strategies for patient selection in invasive management of AF.<br /> (© 2023 Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1540-8167
Volume :
34
Issue :
5
Database :
MEDLINE
Journal :
Journal of cardiovascular electrophysiology
Publication Type :
Academic Journal
Accession number :
36934383
Full Text :
https://doi.org/10.1111/jce.15890