Back to Search Start Over

Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways.

Authors :
Quirion L
Robert A
Boulais J
Huang S
Bernal Astrain G
Strakhova R
Jo CH
Kherdjemil Y
Thibault MP
Faubert D
Kmita M
Baskin JM
Gingras AC
Smith MJ
Cote JF
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 Mar 25. Date of Electronic Publication: 2024 Mar 25.
Publication Year :
2024

Abstract

The ADP-ribosylation factors (ARFs) and ARF-like (ARLs) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we utilized proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ~3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
36909472
Full Text :
https://doi.org/10.1101/2023.03.01.530598