Back to Search Start Over

A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries.

Authors :
Shi P
Ma J
Liu M
Guo S
Huang Y
Wang S
Zhang L
Chen L
Yang K
Liu X
Li Y
An X
Zhang D
Cheng X
Li Q
Lv W
Zhong G
He YB
Kang F
Source :
Nature nanotechnology [Nat Nanotechnol] 2023 Jun; Vol. 18 (6), pp. 602-610. Date of Electronic Publication: 2023 Mar 09.
Publication Year :
2023

Abstract

The ionic conductivity of composite solid-state electrolytes does not meet the application requirements of solid-state lithium (Li) metal batteries owing to the harsh space charge layer of different phases and low concentration of movable Li <superscript>+</superscript> . Herein, we propose a robust strategy for creating high-throughput Li <superscript>+</superscript> transport pathways by coupling the ceramic dielectric and electrolyte to overcome the low ionic conductivity challenge of composite solid-state electrolytes. A highly conductive and dielectric composite solid-state electrolyte is constructed by compositing the poly(vinylidene difluoride) matrix and the BaTiO <subscript>3</subscript> -Li <subscript>0.33</subscript> La <subscript>0.56</subscript> TiO <subscript>3-x</subscript> nanowires with a side-by-side heterojunction structure (PVBL). The polarized dielectric BaTiO <subscript>3</subscript> greatly promotes the dissociation of Li salt to produce more movable Li <superscript>+</superscript> , which locally and spontaneously transfers across the interface to coupled Li <subscript>0.33</subscript> La <subscript>0.56</subscript> TiO <subscript>3-x</subscript> for highly efficient transport. The BaTiO <subscript>3</subscript> -Li <subscript>0.33</subscript> La <subscript>0.56</subscript> TiO <subscript>3-x</subscript> effectively restrains the formation of the space charge layer with poly(vinylidene difluoride). These coupling effects contribute to a quite high ionic conductivity (8.2 × 10 <superscript>-4</superscript>  S cm <superscript>-1</superscript> ) and lithium transference number (0.57) of the PVBL at 25 °C. The PVBL also homogenizes the interfacial electric field with electrodes. The LiNi <subscript>0.8</subscript> Co <subscript>0.1</subscript> Mn <subscript>0.1</subscript> O <subscript>2</subscript> /PVBL/Li solid-state batteries stably cycle 1,500 times at a current density of 180 mA g <superscript>-</superscript> <superscript>1</superscript> , and pouch batteries also exhibit an excellent electrochemical and safety performance.<br /> (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)

Subjects

Subjects :
Ions
Metals
Lithium
Electrolytes

Details

Language :
English
ISSN :
1748-3395
Volume :
18
Issue :
6
Database :
MEDLINE
Journal :
Nature nanotechnology
Publication Type :
Academic Journal
Accession number :
36894781
Full Text :
https://doi.org/10.1038/s41565-023-01341-2