Back to Search Start Over

Individualized Treatment Effects of Bougie versus Stylet for Tracheal Intubation in Critical Illness.

Authors :
Seitz KP
Spicer AB
Casey JD
Buell KG
Qian ET
Graham Linck EJ
Driver BE
Self WH
Ginde AA
Trent SA
Gandotra S
Smith LM
Page DB
Vonderhaar DJ
West JR
Joffe AM
Doerschug KC
Hughes CG
Whitson MR
Prekker ME
Rice TW
Sinha P
Semler MW
Churpek MM
Source :
American journal of respiratory and critical care medicine [Am J Respir Crit Care Med] 2023 Jun 15; Vol. 207 (12), pp. 1602-1611.
Publication Year :
2023

Abstract

Rationale: A recent randomized trial found that using a bougie did not increase the incidence of successful intubation on first attempt in critically ill adults. The average effect of treatment in a trial population, however, may differ from effects for individuals. Objective: We hypothesized that application of a machine learning model to data from a clinical trial could estimate the effect of treatment (bougie vs. stylet) for individual patients based on their baseline characteristics ("individualized treatment effects"). Methods: This was a secondary analysis of the BOUGIE (Bougie or Stylet in Patients Undergoing Intubation Emergently) trial. A causal forest algorithm was used to model differences in outcome probabilities by randomized group assignment (bougie vs. stylet) for each patient in the first half of the trial (training cohort). This model was used to predict individualized treatment effects for each patient in the second half (validation cohort). Measurements and Main Results: Of 1,102 patients in the BOUGIE trial, 558 (50.6%) were the training cohort, and 544 (49.4%) were the validation cohort. In the validation cohort, individualized treatment effects predicted by the model significantly modified the effect of trial group assignment on the primary outcome ( P value for interaction = 0.02; adjusted qini coefficient, 2.46). The most important model variables were difficult airway characteristics, body mass index, and Acute Physiology and Chronic Health Evaluation II score. Conclusions: In this hypothesis-generating secondary analysis of a randomized trial with no average treatment effect and no treatment effect in any prespecified subgroups, a causal forest machine learning algorithm identified patients who appeared to benefit from the use of a bougie over a stylet and from the use of a stylet over a bougie using complex interactions between baseline patient and operator characteristics.

Details

Language :
English
ISSN :
1535-4970
Volume :
207
Issue :
12
Database :
MEDLINE
Journal :
American journal of respiratory and critical care medicine
Publication Type :
Academic Journal
Accession number :
36877594
Full Text :
https://doi.org/10.1164/rccm.202209-1799OC